Модифицирующие агенты в анализе механизмов лучевого поражения макромолекул

Модифицирующие агенты в анализе механизмов лучевого поражения макромолекул

Чувствительность макромолекул >к радиационному воздействию можно изменить по меньшей мере в два или три раза в зависимости от условий во время облучения или после него. К числу агентов, которые модифицируют радиочувствительность макромолекул, относятся кислород, температурное воздействие, добавление молекул — примесей — и др. Каждый из этих «комнатных факторов», естественно, не может повлиять на физический акт переноса энергии излучения ‘к макромолекуле, и все-таки эти воздействия способны усилить или ослабить лучевое поражение. Поэтому считают, что модифицирующие агенты влияют

Модифицирующие агенты в анализе механизмов лучевого поражения макромолекул

Рис. III—-19. Инактивация сухой РНКазы у-излучеиием 80Со в вакууме (1) и в присутствии кислорода (2) (по Гюнтеру и Юнгу, 1967)

Рис. III—20. Относительная чувствительность сухого трипсина к действию у-излучения в зависимости от содержания кислорода во время облучения (за единицу принята радиочувствительность трипсина в вакууме) (по Хатчинсону, 1961)

не на первичные акты абсорбции энергии, а на более поздние этапы лучевого поражения. Например, они могут изменить характер миграции энергии внутри макромолекулы или между молекулами, избирательно защитить определенные функциональные группы или изменить характер физико-химичеоких реакций, в которые вступают облученные молекулы.

Модифицирующее действие кислорода. В экспериментах с сухими препаратами ферментов было установлено, что их радиочувствительность значительно возрастает, если облучение проводится в атмосфере кислорода, а не в вакууме. На рис. III-19 представлены результаты эксперимента по сопоставлению эффективности инактивации сухой РНКазы у-лучами в вакууме и в атмосфере кислорода. Значение дозы для инактивации ри-бонуклеазы в вакууме примерно вдвое выше, чем в атмосфере 02.

На рис. III-20 показано, как изменяется радиочувствительность сухого трипсина при изменении атмосферы во время облучения. За единицу принята чувствительность трипсина к радиационному воздействию в вакуума. Даже незначительное содержание кислорода в среде приводит к резкому возрастанию инакти-вирующего действия данной дозы облучения, эффект инактивации возрастает при увеличении давления Ог примерно до 120 мм рт. ст., дальнейшее увеличение неэффективно.

Механизм кислородного эффекта выяснен недостаточно. Ряд исследователей (см., например, Дертингер и Юнг, 1973) объясняют способность кислорода повышать чувствительность макромолекул к прямому действию тем, что некоторые молекулы, изначально получившие повреждение, восстанавливаются в отсутствие кислорода в результате одного из таких процессов:

(ионизированная молекула) МН+ + е_->-МН, (111-10) (свободнорадикальное состояние молекулы) М+Н’-*МН, (111-11)

а кислород ингибирует обе реакции либо за счет перехвата электрона, либо за счет превращения радикала М» в перекисный радикал М02» (в последнем случае возникает необратимое повреждение, связанное с пероксидацией радикала М»).

В обоих случаях предполагается, что кислород оказывает потенцирующее действие, т. е. он не увеличивает истинное число первичных повреждений, а тормозит или полностью прекращает протекание восстановительных процессов.

В последние годы JI. X. Эйдус и его сотр. обнаружили пострадиационное действие кислорода на ферменты, которое было названо кислородным последействием. Один из экспериментов, в которых был обнаружен этот эффект, состоял в следующем. Ампулы с сухим пепсином облучали в анаэробных условиях в дозах, в 1,5 раза превышающих дозу D37, затем облученный фермент переносили (без доступа 02) в герметическую камеру, наполненную аргоном, где и проверяли активность фермента. Было показано, что при облучении ферментативная активность не теряется и в анаэробных условиях может сохраняться длительное время. В отсутствие воды кислород также не оказывал инактиви-рующего действия, и лишь при увлажнении препарата происходила его инактивация под действием кислорода, степень которой увеличивалась с ростом поглощенной дозы.

Существование долгоживущих скрытых повреждений реализуемых при взаимодействии с кислородом, доказано, по крайней мере для некоторых ферментов по критерию их инактива-

1 Согласно принятому определению «скрытое (потенциальное) повреждение — это состояние, при котором исследуемые свойства объекта после его облучения не отличаются от исходных, но могут стать иными в силу дополнительных внешних воздействий или в результате процессов, происходящих в объекте» (Эйдус Л. X. Физико-химические основы радиобиологических процессов и защиты от излучений. М., Атомиздат, 1972).

ции. По мнению JI. X. Эйдуса, отсутствие поражения некоторых объектов при анаэробном облучении свидетельствует, что кислород не просто один из агентов, модифицирующих поражение, а необходимый участник определенных видов поражения. При этом кислород может оказать поражающее действие, присутствуя не только во время облучения, но и после его окончания.

По мнению ряда исследователей, в облученном образце возникают два вида поражения: первый требует присутствия кислорода непосредственно «под лучом», второй способен длительное время сохраняться в отсутствие кислорода, т. е. соответственно короткоживущие и дол-гоживущие «скрытые» повреждения.

Анализ физико-химических процессов, приводящих к возникновению скрытых повреждений, требующих для своей реализации кислорода, проводится в настоящее время. В частности, анализируется связь этих эффектов с возникающими в результате облучения свободными радикалами (кислород влияет на спектр ЭПР облученных биомакромолекул и в ряде случаев даже приводит к исчезновению сигнала ЭПР облученных белков). Проблема возникновения и реализации скрытых повреждений далека от разрешения и служит предметом радиа-цонно-биологического анализа.

Изменение температуры во время облучения. Радиочувствительность многих макромолекул зависит от температуры во время облучения. Пример этого приведен на рис. 111-21, где показана инактивация сухой РНКазы у-излучением при трех различных температурах. Механизм температурного эффекта окончательно не установлен. Предполагают, что константа скорости реакции (или реакций), определяющей инактивацию макромолекулы, зависит от температуры. По крайней мере некоторыми из таких реакций могут быть взаимодействия макромолекул с атомарным водородом и другими малыми радикалами, которые высвобождаются при облучении органических материалов и, вероятно, атакуют непораженные молекулы.

Температурное последействие. В облученных белковых молекулах возникают скрытые повреждения, переходящие в явные при дополнительном тепловом воздействии, например, возникающие внутримолекулярные повреждения приводят к инактивации фермента после обработки облученного препарата теплом. Тепловое воздействие эффективно и после аэробного облучения,

Модифицирующие агенты в анализе механизмов лучевого поражения макромолекулРис. 111—21. Инактивация РНКазы

у-лучами 60Со в вакууме при различных температурах (по Окада и др., 1970)

Рис. III—22. Влияние глутатиона на радиочувствительность инвертазы (смесь 5% инвертазы и глутатиона в разных концентрациях высушивали, а затем облучали рентгеновскими лучами) (по Брамсу, 1960)

т. е. нагревом реализуются иные скрытые повреждения, чем те, на которые способен воздействовать кислород. Таким образом, в одной и той же макромолекуле могут возникать по крайней мере два типа скрытых повреждений. Под влиянием тепла не могут быть реализованы все типы скрытых повреждений, в том числе чувствительные к 02. Природа скрытых повреждений, требующих для своей реализации дополнительного теплового воздействия, исследуется в настоящее время.

Модифицирующие агенты в анализе механизмов лучевого поражения макромолекул

Рис. III—23. Зависимость фактора уменьшения дозы ФУД от концентрации добавленного цистамина при лучевой инактивации рибонуклеазы. ФУД= = £>37 в условиях защиты/Озт при облучении чистого фермента (по Юнгу, 1966)

Присутствие молекул-примесей во время облучения. Облучение белка в смеси с рядом низкомолекулярных веществ может либо уменьшить его радиочувствительность (эффект защиты), либо увеличить ее (эффект сенсибилизации). Наиболее выраженным защитным действием в сухих системах обладают вещества, содержащие сульфгидрильную группу или дисульфидную связь. На рис. III-22 показано, как изменяется относительная радиочувствительность инвертазы (ее оценивали по величине дозы Dzi) в зависимости от концентрации добавленного глутатиона.

Для количественной оценки эффективности защитного агента часто определяют величину «ФУД» — фактора уменьшения дозы, которая определяется как отношение дозы Z)37 (или Dm) в присутствии и в отсутствие защитного агента. На рис. III-23 показано изменение величины ФУД в зависимости от концентрации цистамина, добавленного в качестве «защитного» агента.

Не все примесные молекулы защищают белки — добавление сахарозы увеличивает степень инактивации рибонуклеазы в 2,6 раза. Аналогичным действием обладает целый ряд углеводов.

Выяснение механизма защитного и сенсибилизирующего действия примесных молекул служит в настоящее время предметом радиационно-биофизического анализа. Прогресс в этой области во многом зависит от понимания природы начальных поражений, возникающих в облученных макромолекулах. В настоящее время обсуждается ряд гипотез о механизме защиты макромолекул низкомолекулярными соединениями. Во-первых, их действие может осуществляться за счет конкуренции за высокоактивные свободные радикалы (атомарный водород и другие фрагменты облученных молекул), которые могут вызывать структурные поражения макромолекулы. Другая возможность состоит в том, что защитный агент способствует восстановлению пораженной макромолекулы за счет переноса водорода с защитного вещества (РН) на свободный радикал пораженной биомакромолекульг (R-) по типу реакции (III-9).

Были предложены гипотезы, связывающие защитное действие низкомолекулярных веществ с процессами межмолекулярной миграции энергии, т. е. полагают, что в облученном межмолекулярном комплексе «макромолекула — примесь» возможна миграция энергии и заряда. В зависимости от того, какая из компонент этого комплекса является донором или акцептором, возможно ослабление или усиление повреждения биомакромолекулы. Эффективность миграции энергии зависит от степени комплексооб-разования. Показано, что в механической смеси (комплексообра-зование отсутствует) защитный агент обладает гораздо более слабым действием, чем при наличии комплекса защитного соединения и макромолекулы (комплекс получают из раствора при совместном осаждении макромолекулы и защитного соединения). В то же время известно, что при комплексообразовании миграция заряда гораздо сильнее, чем в механической смеси этих же веществ. Вероятно, за счет миграции энергии и заряда защитный агент «отводит» избыточную энергию, поглощенную облученной макромолекулой.

Модифицирующее действие низкомолекулярных примесных молекул используют для выяснения роли миграции энергии в начальных радиобиологических процессах, тем более что в реальных условиях (в ядре, цитоплазме или органоидах) биомакромолекулы • окружены низкомолекулярнымн субстратами, которые могут служить донорами или акцепторами поглощенной энергии излучения.

В последние два десятилетия использование модифицирующих агентов становится традиционным приемом биофизического анализа первичных процессов лучевого поражения макромолекул и значительно более сложных систем, включая клетку и многоклеточный организм. Таким образом, пытаются подойти к выяснению роли свободных радикалов в возникновении структурных повреждений и последующей инактивации макромолекул. Представляет интерес использование агентов, видоизменяющих выход первичных радикалов или их характер, с последующим изучением структурных повреждений, возникающих в модифицированных условиях.

Проводимый в последние годы анализ кислородного и температурного последействия выявил существование «скрытых» повреждений, требующих для своей реализации дополнительного, нерадиационного воздействия во время облучения и после него, т. е. возникло представление о том, что в ряде случаев одного лишь лучевого поражения недостаточно для инактивации макромолекулы.

Перспективно использование модифицирующих агентов для выяснения причинно-следственной связи между различными типами поражения макромолекулы и характером изменения ее биологических свойств. Логика такого исследования состоит в следующем. Пусть модифицирующий агент видоизменяет характер инактивации макромолекулы, например в его присутствии облученный фермент сохраняет сродство к субстрату, хотя и утрачивает каталитическую активность, а без модифицирующего агента облучение инактивирует обе функции макромолекулы. В этом случае интересно сопоставить структурные повреждения, возникающие в присутствии модифицирующего агента и без него. Если в отсутствие модифицирующего агента наблюдаются какие-то дополнительные структурные повреждения, то можно предположить, что с ними связана потеря субстратной специфичности облученного фермента. Для проверки такого предположения необходимы строгие количественные исследования, например сопоставление радиационно-химического выхода данного типа структурного поражения и выхода инактивированных молекул, концентрационных зависимостей и т. д. Если это возможо, следует вызвать такие же повреждения иными, нерадиационными воздействиями и оценить, к каким последствиям для фермента это приведет.

Материал этой главы посвящен рассмотрению биофизических подходов к анализу механизмов инактивации биомакромолекул ионизирующей радиацией. В общем ряду радиобиологических проблем этот вопрос имеет первостепенное значение: лучевое поражение любой биологической системы, от вируса до многоклеточного организма, начинается с инактивации небольшого числа молекул, составляющих биологический субстрат. В то же время облученные сухие гомогенные препараты ферментов или нуклеиновых кислот (— «идеальная» система для биофизического анализа. В живой клетке на первичные радиационные повреждения макромолекул накладываются эффекты, гораздо более сложные и пока еще не определенные: расширение поражения за счет метаболических реакций, восстановление пораженной молекулы за счет функционирования репарирующих систем, эффекты, связанные с гетерогенностью облучаемой системы, присутствием воды и низкомолекулярных субстратов и т. д. Следовательно, изучение механизмов инактивации сухих препаратов — только первый необходимый этап на пути познания природы радиобиологических процессов, протекающих при облучении клетки и организма.

Изучение инактивирующего действия ионизирующей радиации на макромолекулах представляет еще и самостоятельный интерес как метод анализа функциональных свойств отдельных субмолекулярных структур. В этом случае ионизирующее излучение выступает в качестве уникального «инструмента» биофизического анализа ферментов, нуклеиновых кислот и различных надмолекулярных комплексов: ДНП, хроматина, рибосом и т. д. Используя математический аппарат теории мишени, можно на основании экспериментальных кривых «доза — эффект» установить геометрические размеры мишени, ответственной за данный тип инактивации макромолекулы. Модифицируя условия облучения, в ряде случаев можно добиться возникновения селективных поражений макромолекулы и оценить их роль в эффекте инактивации (например, если в результате облучения фермента разрушается определенный аминокислотный остаток и при этом нарушается конформация активного центра и исчезает сродство к субстрату, то можно предположить, что данный структурный участок регулирует конформацию активного центра). Преимущество радиационного воздействия состоит еще и в том, что с его помощью можно добиться возникновения узколокальных повреждений в любом участке молекулы, при этом другие структурные звенья останутся неповрежденными (существенно, что при этом макромолекулы могут оставаться сухими, находиться в вакууме или в любой газовой смеси, быть замороженными до любой температуры или параллельно подвергаться иным воздействиям).

Предстоит еще многое сделать для воссоздания целостной картины, которая развертывается от момента ионизации или возбуждения макромолекулы, поглотившей энергию излучения, до ее химического повреждения и инактивации. Необходим глубокий теоретический анализ спектра первичных возбуждений макромолекул, детальное выяснение процессов миграции энергии и заряда внутри молекулы и между молекулами. Экспериментальные исследования должны установить спектр первичных продуктов к характер их дальнейших преобразований до возникновения стабильного радиационного повреждения. И наконец, в содружестве с биохимиками предстоит выяонить вклад определенных типов структурного повреждения в эффект инактивации.